Embeddings
info
🚧 Cortex is currently under development, and this page is a stub for future development.
cortex.cpp now support embeddings endpoint with fully OpenAI compatible.
For embeddings API usage please refer to API references. This tutorial show you how to use embeddings in cortex with openai python SDK.
Embedding with openai compatible​
1. Start server and run model​
cortex run llama3.1:8b-gguf-q4-km
2. Create script embeddings.py
with this content​
from datetime import datetimefrom openai import OpenAIfrom pydantic import BaseModelENDPOINT = "http://localhost:39281/v1"MODEL = "llama3.1:8bb-gguf-q4-km"client = OpenAI( base_url=ENDPOINT, api_key="not-needed")
3. Create embeddings​
response = client.embeddings.create(input = "embedding", model=MODEL, encoding_format="base64")print(response)
The reponse will be like this
CreateEmbeddingResponse( data=[ Embedding( embedding='hjuAPOD8TryuPU8...', index=0, object='embedding' ) ], model='meta-llama3.1-8b-instruct', object='list', usage=Usage( prompt_tokens=2, total_tokens=2 ))
The output embeddings is encoded as base64 string. Default the model will output the embeddings in float mode.
response = client.embeddings.create(input = "embedding", model=MODEL)print(response)
Result will be
CreateEmbeddingResponse( data=[ Embedding( embedding=[0.1, 0.3, 0.4 ....], index=0, object='embedding' ) ], model='meta-llama3.1-8b-instruct', object='list', usage=Usage( prompt_tokens=2, total_tokens=2 ))
Cortex also supports all input types as OpenAI.
# input as stringresponse = client.embeddings.create(input = "embedding", model=MODEL)# input as array of stringresponse = client.embeddings.create(input = ["embedding"], model=MODEL)# input as array of tokensresponse = client.embeddings.create(input = [12,44,123], model=MODEL)# input as array of arrays contain tokensresponse = client.embeddings.create(input = [[912,312,54],[12,433,1241]], model=MODEL)